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A numerical solution is obtained for a Stefan problem modeling the continuous 
teeming of steel in different regimes. 

The process of solidification of molten metal has a significant effect on the initial 
characteristics of the ingot [i, 2]. Investigators have now discovered the basic laws 
governing the formation of a continuous-cast ingot in different teeming regimes, and a great 
deal of experimental data has been accumulated. However, a detailed quantitative investi- 
gation of thermal processes taking place during continuous casting requires the use of mathe- 
matical modeling and computer technology [3]. 

Here we mathematically model the thermophysical process of the formation of a continuous- 
cast ingot. Using dimensionless parameters and constant (averaged) thermophysical charac- 
teristics for the melt and ingot, we succeeded in using a fairly simple mathematical model 
to determine the effect of withdrawal rate, heat of phase transformation, and thermal boun- 
dary conditions on ingot quality. We will use the "parabolic" approximation [4] to approxi- 
mately solve a quasisteady Stefan problem. In this approximation, we ignore the effect of 
heat flows along the ingot. The computing algorithm is based on the use of a through comput- 
ing scheme, with smoothing of the coefficients [5]. 

Formulation of the Problem. We will examine the principal thermal processes taking 
place in the formation of a continuous-cast cylindrical steel ingot (Fig. i). Molten metal 
is poured into the mold, and the metal cools and solidifies. The ingot is withdrawn from the 
mold at a constant rate. The interest in studying the melt-solid boundary stems from the 
fact that it in large part determines the quality of the ingot. 

The problem is described by the following heat-conduction equation in cylindrical 
variables: 

rl Odr ( kr OT )Or OzO ( O_~z ) OToz +-- k =co,, ,, 0<r<R, 0<z<oo. (i) 

The thermal conductivity and heat capacity of the ingot are constant. At the phase boundary 
S, where T = T*, the temperature is continuous hut the heat flux is discontinuous. The 
magnitude of this discontinuity is equal to the product of the heat of phase transformation and 
the normal component of the velocity of the phase boundary: 

(T)x = (T), = T*, (r, z) E S, (2 )  

-- -- ~o cos z) E ( k OT~/., ( k OT ~ = /  (n, z), (r, S. (3) 

In (3), n is a normal to S, this being an exterior normal relative to the region of the melt i; 
cos(n, z) is the cosine of the angle between the normal and the OZ axis (Fig. i). 

We supplement Eq. (i) with the corresponding boundary conditions: 

atz=0 

T(r, O) = To, ( 4 )  
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Fig. i. Diagram of continuous casting of the steel: i) melt; 
solidified part of ingot; 3) mold; 4) secondary cooling zone. 

Fig. 2. Isotherms for the base variant. 
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T (r, z) = Tr ( 5 )  

aT 
r ~ ( r ,  z)-+O, (6)  

Or 

atr=R 

aT 
k ... (r, z) : - -  ~z (T  - -  To), ( 7 )  

Or 

where ~ = ~(z) is an assigned function. 

Quasisteady Stefan problem (1-7) is not convenient for study. The difficulties arise 
mainly from the fact that it is necessary to examine the problem in an infinite half-strip 
(0, R)(0, ~). We therefore use the "parabolic" approximation (see [4], for example). With 
sufficiently high withdrawal rates v, we can ignore temperature nonuniformity along the ingot 
in problem (1-7). To substantiate such an approximation, it will suffice to evaluate the 
heat-flux relations W v = cvT and W k = k(ST/Sz), accounting for heat transfer and thermal 
conductivity along the ingot. At realistic withdrawal speeds, the temperature field of a 
continuous-cast steel ingot is characterized by the fact that q = Wv/W k >> i, such as q ~ 10 4 . 
This allows us to discard the second term in the left side of heat-conduction equation (I). 

After introducing dimensionless variables into problem (1-7), with allowance for the 
above approximation we arrive at the following parabolic problem: 

1 0 {r Ou~ Ou , z > o ,  ( s )  
f Or Or J Oz 

(u)x=(u)e=l ,  (r, z) CS, (9) 

On ]1 -~n  2=--PeStc~ z), (r, z) ES, 

. (r ,  O) = Uo, 

0/I 
r. .--~-0, r--*O, 

Or 

(10)  

(11) 

(12) 

O[z 
- -  Bi (u-- Uc), r = . l .  

Or (13) 
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Problem (8-13) is characterized by the dimensionless numbers Pe and St and the relation Bi(z). 
We used the following equation for Bi(z) in our calculations: 

[Bi (z) = (Bio - -  Bil) exp (- -  • -k Bil, (14 )  

so  t h a t  B i ( 0 )  = Bi0 and B i ( - )  = B iz .  E q u a t i o n  (14)  makes i t  p o s s i b l e  t o  model  d i f f e r e n t  
cooling regimes for steel ingots. 

Numerical Method. We used the generalized formulation [5] to approximately solve problem 
(8-14). Here, Eq. (8) is replaced by 

I a (r  Ou / = P e ( l + S t 6 ( u _ l ) ) ~ z U  ' 0 < r < l ,  z > O .  (15 )  
r Or \ Or J 

In this case, conditions (9) and (i0) follow from (15). In the numerical realization, in- 
stead of problem (11-15) we solve a different problem involving grid smoothing of the 6- 
function in the right side of (15). To accomplish this, we employed the procedure of layer-by- 
layer (at each moment of time) selection of a grid analog of the 6-function so that 6(u - i) 
was always "blurred" only at two nodes of the spatial (relative to r) grid. This local 
smoothing procedure is mandatory in solving Stefan problems which are close to single-phase 
problems (the temperature in the melt is close to the phase-transformation temperature). 

We employed a classical symmetrical difference scheme (weight o = 0.5). No additional 
internal iterations for nonlinearity (on the free phase boundary) were performed. We con- 
ducted methodological tests to determine the appropriate meshes of the grids for the radius 
r and z, the number of nodes, etc. 

Results of Calculations. As the main variant we studied problem (8-14) with u 0 = 1.02, 
uc = 0.2, Pe = 150, St = 0.2, Bi 0 = 3, K = 0. Figure 2 shows the isotherms for this variant. 

Figure 3 shows the phase boundaries with a change in the Stefan number (solid lines). 
We note that the heat of phase transformation has a significant effect on solidification. 
The same figure shows the phase boundaries with a change in the boundary regime (Bi 0 in the 
present case). The other parameters of the problem remain the same as for the base variant. 

Figure 4 shows the effect of the Peclet number (withdrawal rate). The depth of the melt 
increases with an increase in Pe. Here, we also modeled different boundary regimes and we 
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Fig. 3. Effect of the Stefan number and the number Bi 0 on the form 
of the solidification front (u 0 = 1.02, u c = 0.2, Pe = 150, K = 0): 
i) St = 0; 2) 0.15; 3) 0.3 (Bi 0 = 3); 4) Bi 0 = 3; 5) i (St = 0.2). 

Fig. 4. Form of the solidification front for different values of the 
Peclet number and the parameter K (u0 = 1.02, u c = 0.2, Bi0 = 3, Biz = 
0.2): i) Pe = i00; 2) 150; 3) 200 (K = 0.025); 4) K = 0.01; 5) 0.06 
(Pe = 150 ) .  
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changed the parameter < in (14). Similar data was obtained for other values of the deter- 
mining parameters of the problem. 

NOTATION 

(r, r z), cylindrical coordinates; R, radius of the cylindrical ingot; v, withdrawal 
rate; T*, phase transformation temperature; T c, ambient temperature; To, initial temperature 
of the melt; k, heat of phase transformation; k, thermal conductivity; c, heat capacity; ~, 
coefficient of heat transfer with the environment; Pe = vRc/k, Peclet number; St = k/cT*, 
Stefan number; Bi = ~R/k, Biot number. 
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THE STUDY OF NONLINEAR PROBLEMS OF HIGH-INTENSITY 

NONSTATIONARY HEAT TRANSFER 

O. N. Shablovskii UDC 536.2.01 

Analytic solutions are found of the nonlinear equations of heat transfer for a 
dominating effect of relaxation on the thermal flux evolution. The physical 
interpretation is given of the results obtained as applied to heat exchange 
problems in one-dimensional regions with moving boundaries. 

i. Potential Systems of Equations of Heat Transfer. In the one-dimensional case the 
equations of heat transfer, in which the finite relaxation time of thermal flux is accounted 
for, are [i, 2]: 

eT,+q~ = O, (1) 

~Tx -[- Yqt @ q = O. (2) 

We take into account that the following inequality is valid in a number of high-intensity 
nonstationary thermal processes [2-4] 

t?Oq/Otl~q, O ~ < t ~ < t l < 8 < ~ ,  TC[T~, T21, (3) 

making it possible to simplify the mathematical model (i), (2) and use in a considered 6- 
neighborhood of the initial moment of time the approximate equations 

cTt+q~=O, ~T~+?qt=O. (4) 

The integral equation 

t 

q=-c-~ [qO(x)__j' (~kT~/y) dt], ~----exp(t/?), 
0 
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